Large-Scale Convex Optimization Via Saddle Point Computation
نویسندگان
چکیده
منابع مشابه
Saddle Point Seeking for Convex Optimization Problems
In this paper, we consider convex optimization problems with constraints. By combining the idea of a Lie bracket approximation for extremum seeking systems and saddle point algorithms, we propose a feedback which steers a single-integrator system to the set of saddle points of the Lagrangian associated to the convex optimization problem. We prove practical uniform asymptotic stability of the se...
متن کاملA primal-dual algorithm framework for convex saddle-point optimization
In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the co...
متن کاملOn the saddle point problem for non-convex optimization
A central challenge to many fields of science and engineering involves minimizing non-convex error functions over continuous, high dimensional spaces. Gradient descent or quasi-Newton methods are almost ubiquitously used to perform such minimizations, and it is often thought that a main source of difficulty for the ability of these local methods to find the global minimum is the proliferation o...
متن کاملSVM via Saddle Point Optimization: New Bounds and Distributed Algorithms
Support Vector Machine is one of the most classical approaches for classification and regression. Despite being studied for decades, obtaining practical algorithms for SVM is still an active research problem in machine learning. In this paper, we propose a new perspective for SVM via saddle point optimization. We provide an algorithm which achieves (1 − )-approximations with running time Õ(nd +...
متن کاملLarge-scale semidefinite programming via a saddle point Mirror-Prox algorithm
In this paper, we first demonstrate that positive semidefiniteness of a large well-structured sparse symmetric matrix can be represented via positive semidefiniteness of a bunch of smaller matrices linked, in a linear fashion, to the matrix. We derive also the “dual counterpart” of the outlined representation, which expresses the possibility of positive semidefinite completion of a well-structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research
سال: 1999
ISSN: 0030-364X,1526-5463
DOI: 10.1287/opre.47.1.93